Seeking Cures for Modern Anxieties

Biology of Stress & Relevance to Willamette Recovery Programs

Biology of Stress in Fish

Carl B. Schreck, Lluis Tort, Anthony P. Farrell and Colin J. Brauner

SERIES EDITORS: Anthony P. Farrell and Colin J. Brauner

Researching stress For a while

Refereed publications relevant to trap & haul & bypass: 117 out of >300 total

"The non-specific response of the body to any demand placed upon it"

Stress

"The physiological cascade of events that occurs when the organism is attempting to resist death or reestablish homeostatic norms in the face of insult"

Schreck

Phases of Stress

Compensation/Recovery or Exhaustion

Stress is

• Rx to stressor & a function of the animals genetics, history, and present environment

Stress Response

Stress Response

Primary

Cortisol Catecholamines

Secondary

<u>Energy</u>

Glucose Lactate Cardiovascular FFA, Pr.

Hydromineral Water ↑↓ Na ↑↓

K Gill vascularization Immune Redistribution Suppression

Tertiary

Disease Rx AB↓↑

<u>Behavior</u>

Learning $\uparrow \downarrow$ Predator avoidance \downarrow Migration \downarrow Growth Hypertrophy↓ Hyperplasia↓ Apoptosis↑

Development Retarded

Reproduction Accelerated Inhibited Fecundity 4

Energy Cost of Stress Huge

Energy not available for:

- Migration
- Disease resistance
- Growth
- Smolting
- Reproduction
- Learning (imprinting)

Developmental stage matters Smolts very vulnerable

Barton et al.

Stress causes disease easier during smolting

PERCEPTION

If threat is real or not doesn't matter

How do we know?

- Net capture, bucket transport, 24 h shallow water comfinement
- Anesthetic before net capture, air, 24 h confinement
- Anesthetic after net capture & air, then 24 h confinement

Effect of Anesthetics on Capture and Crowding 24 hr

Effect of Anesthetics on Capture and Crowding 24 hr

Effect of Anesthetics on Capture and Crowding 24 hr

Pieter Bruegel, 1557 Big Fish Eat Little Fish

Simulated Trawl Tank

Behavioral Impairment Predator Avoidance

EFFECT OF SIMULATED TRAWLING ON PREDATOR AVOIDANCE IN WALLEYE POLLOCK

Effect of 15 min Towing Stress (in light) on Walleye Pollock

Bycatch capture & release effects

Chinook Transport to Marion Forks

Transport month & saltwater challenged in MayEffect 3 to 8 weeks

Stewart et al. 2017

Cogliati et al. 2019

Unexpected but relevant stressors

The social environment matters:

- Density/Crowding important
- Chinook are quite pacifistic
- Steelhead beat up on each other & Chinook

FISH CAN HEAR INFRSOUND—CAUSE FEAR AS FROM 60 CYCLE MOTORS/GENERATORS

Knudsen

Color can affect stress level

MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY, 2016 VOL. 49, NO. 4, 223–234 http://dx.doi.org/10.1080/10236244.2016.1168036

The effect of green and red light spectra and their intensity on the oxidative stress and non-specific immune responses in gold-striped amberjack, *Seriola lalandi*

Young Jae Choi^a, Ji Yong Choi^a, Sang-Geun Yang^b, Bong-Seok Kim^b and Cheol Young Choi^a

Contents lists available at ScienceDirect

Fish & Shellfish Immunology

journal homepage: www.elsevier.com/locate/fsi

Full length article

Effects of different light wavelengths from LEDs on oxidative stress and apoptosis in olive flounder (*Paralichthys olivaceus*) at high water temperatures

Bong-Seok Kim $^{\rm a}$, Seo Jin Jung $^{\rm b}$, Young Jae Choi $^{\rm b}$, Na Na Kim $^{\rm b}$, Cheol Young Choi $^{\rm b,\,*}$, Jae-Woo Kim $^{\rm a}$

Contents lists available at ScienceDirect

Fish & Shellfish Immunology

journal homepage: www.elsevier.com/locate/fsi

Full length article

Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (*Carassius auratus*) during thermal stress

Seo Jin Jung ^a, Young Jae Choi ^a, Na Na Kim ^a, Ji Yong Choi ^a, Bong-Seok Kim ^b, Cheol Young Choi ^{a, *}

Green & Blue good

Green vs White

Green & Blue vs White or Red

Green vs white or red

Shade or darkness good for salmonids

You're stressing me out Carl; I'm not wearing shades like you

REPEATED

TIME

Can have cumulative effects

Barton & Schreck

36

Effects of Multiple Dam Passage Saltwater Preference

Seals Price & Schreck. 2003

> PHYSICAL CONDITIONING

>MENTAL CONDITIONING

STRESS HARDENING

"Trap" & Haul 1.5 Hr

DISEASE CHALLENGE

REARING DENSITY Willard NFH

H = Production densityM = 2/3 Production densityL = 1/3 Production density

Vibriosis
STRESSOR

CONCURRENT

TIME

Lingcod Bycatch, caught @ 8 °C Think epilimnion temperature

Davis et al.

Mortality %

(PROXIMITY TO TOLERANCE LIMITS)

Don't think of the stress response as unimodal or even linear

Stressor severity & duration, fish physiology* & envisonment interact to affect fight or copile ability

Reflections on Stress

The world according to Goop Carl: re Stress

- Interpretation of stress is part art
- Good at knowing when stressed, not when free of stress—False negatives easy
- Consequences not linear often not unimodal
- Effects of individual stressors cumulate
- Consequences can be delayed effects

Frank Haul & Byn according to Ca

The strategy is trap & haul or bypass

Effectiveness of either depend on the success of the tactics employed

The nature of the fish trap or guidance system matters

Condition of fish encountering a trap or guidance system matters

Fish can be affected by fear of entering trap/bypass

Have fish moved into trap or bypass because they are motivated, forced, passive, or sick?

Different magnitude of effects but all bad

Fish condition matters

Herron

Vectors

Stress above dam affects behavior/performance below

Other trap & Haul or Bypass variables

The transport vehicle & condition of fish pre-loading matters

Trip duration matters

The Species being Trap & Hauled matters Chinook are stress-sensitive

Water quality critical Transport medium additives?

Effect of Anesthetics on Capture and Crowding 24 hr

Effect of Anesthetics on Capture and Crowding 24 hr

Stress pheromones?

Release matters: How & where

http://www.nps.gov/romo/images/lg_stockfishglaciercreek1932_1.jpg

Release stress & predation Day vs night release

Stress can result in disease, reduce predator avoidance, & affect other necessary functions

Particularly in smolts; e.g., BKD Cross infection & Immunosuppression

The world according to Gopp Carl: Important variables

- Density/crowding
- Duration
- Temperature/other water quality
- Fish condition, developmental state
- Color of containers
- Light vs dark (better)
- Sound
- Other species present
- Recipient environment

FINDING NEMO

Have to put all the parts together correctly. Any tactic that's not optimized is bad and effects cumulate

Detroit Trap & Haul Animation

Not a fisheye view

How/When? Release Vibration & Sound Light/Dark Time Turbulence/ Other species Velocity Odors Fear Individual stress effects cumulate

Trap and Haul –

Entry + entrainment (capture velocity) + sorting/sampling + pod collection (captivity) + crowding + multispecies interaction + lateral disease/parasite transmission + holding time + loading of pod onto amphibious vehicle + transport to release site + large group release = STRESS!

Volitional Passage –

Entry + entrainment (capture velocity) + transport tube + subsampling (~10% as at Clackamas) + real time release = stress

Bottom Line: Bypass is desirable to trap & haul

Trap and haul tactics can be assessed in the lab, very difficult to do with bypass

Detroit Trap & Haul animation
Fish condition matters: Re Copepods

- Cougar, natural infection trap & ~ 2-3 hr Haul
 - 34 dead out of 40 by 5 days
- Lab infected, netting & bucket transfer ~20 sec
 - 2 dead out of 40 in 2 days, 0 uninfected dead
- Lab infected, netting & bucket transfer ~20 sec
 - 2 dead out of 63 in 2 days, 0 uninfected dead
- Lab infected, netting & IP injection ~ 1 min
 - 30 dead out of 30 in 10 days, 0 uninfected dead
 Romer & Herron, Kent, Neal et al.